Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Clin Infect Dis ; 2022 May 06.
Article in English | MEDLINE | ID: covidwho-1831050

ABSTRACT

BACKGROUND: Vaccination may control the COVID-19 pandemic, including in nursing homes where many high-risk people live. We conducted extensive outbreak investigations. METHODS: We studied an outbreak at a nursing home in Switzerland where vaccination uptake of mRNA vaccines against SARS-CoV-2 was 82% among residents as of Jan 21/2021. After a vaccinated symptomatic HCW was diagnosed with COVID-19 on Feb 22, we did an outbreak investigations in house A (47 residents, 37 HCWs) using SARS-CoV-2-specific PCR in nasopharyngeal swabs. We performed whole-genome sequencing of SARS-CoV-2 and serological analyses. RESULTS: We identified 17 individuals with positive PCR tests; ten residents (five vaccinated) and seven HCWs (three vaccinated). Median age among residents was 86 years (interquartile range [IQR] 70-90) and 49 years (IQR 29-59) among HCWs. Among the five vaccinated residents, 60% had mild disease and had 40% no symptoms, whereas all five unvaccinated residents had mild to severe disease and two died. The vaccine effectiveness for the prevention of infection among the residents was 73.0% (95% Cl 24.7-90.1). The 12 available genomes were all alpha variants. Neutralizing titers were significantly higher in vaccinated individuals upon re-exposure (>1 week after diagnosis) than in vaccinated, unexposed HCWs (p=0.012). Transmission networks indicated four likely or possible transmissions from vaccinated to other individuals, and 12 transmission events from unvaccinated individuals. CONCLUSIONS: COVID-19 outbreaks can occur in nursing homes, including transmission from vaccinated persons to others. Outbreaks might occur silently, underlining the need for continued testing and basic infection control measures in these high-risk settings.

2.
Front Med (Lausanne) ; 8: 737602, 2021.
Article in English | MEDLINE | ID: covidwho-1430710

ABSTRACT

Since the start of COVID-19 pandemic the Republic of Djibouti, in the horn of Africa, has experienced two epidemic waves of the virus between April and August 2020 and between February and May 2021. By May 2021, COVID-19 had affected 1.18% of the Djiboutian population and caused 152 deaths. Djibouti hosts several foreign military bases which makes it a potential hot-spot for the introduction of different SARS-CoV-2 strains. We genotyped fifty three viruses that have spread during the two epidemic waves. Next, using spike sequencing of twenty-eight strains and whole genome sequencing of thirteen strains, we found that Nexstrain clades 20A and 20B with a typically European D614G substitution in the spike and a frequent P2633L substitution in nsp16 were the dominant viruses during the first epidemic wave, while the clade 20H South African variants spread during the second wave characterized by an increase in the number of severe forms of COVID-19.

4.
Front Med (Lausanne) ; 8: 636532, 2021.
Article in English | MEDLINE | ID: covidwho-1344270

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative virus of the coronavirus disease 2019 (COVID-19), has been identified in China in late December 2019. SARS-CoV-2 is an enveloped, positive-sense, single-stranded RNA betacoronavirus of the Coronaviridae family. Coronaviruses have genetic proofreading mechanism that corrects copying mistakes and thus SARS-CoV-2 genetic diversity is extremely low. Despite lower mutation rate of the virus, researchers have detected a total of 12,706 mutations in the SARS-CoV-2 genome, the majority of which were single nucleotide polymorphisms. Sequencing data revealed that the SARS-CoV-2 accumulates two-single nucleotide mutations per month in its genome. Recently, an amino acid aspartate (D) to glycine (G) (D614G) mutation due to an adenine to guanine nucleotide change at position 23,403 at the 614th amino-acid position of the spike protein in the original reference genotype has been identified. The SARS-CoV-2 viruses that carry the spike protein D614G mutation have become dominant variant around the world. The D614G mutation has been found to be associated with 3 other mutations in the spike protein. Clinical and pseudovirus experimental studies have demonstrated that the spike protein D614G mutation alters the virus phenotype. However, the impact of the mutation on the rate of transmission between people, disease severity and the vaccine and therapeutic development remains unclear. Three variants of SARS-CoV-2 have recently been identified. They are B.1.1.7 (UK) variant, B.1.351 (N501Y.V2, South African) variant and B.1.1.28 (Brazilian) variant. Epidemiological data suggest that they have a higher transmissibility than the original variant. There are reports that some vaccines are less efficacious against the B.1.351 variant. This review article discusses the effects of novel mutations in the SARS-CoV-2 genome on transmission, clinical outcomes and vaccine development.

5.
Front Public Health ; 9: 686958, 2021.
Article in English | MEDLINE | ID: covidwho-1268319

ABSTRACT

Background: Healthcare workers' (HCWs') travel-related anxiety needs to be assessed in light of the emergence of SARS-CoV-2 mutations. Methods: An online, cross-sectional questionnaire among HCWs between December 21, 2020 to January 7, 2021. The outcome variables were HCWs' knowledge and awareness of the SARS-CoV-2 B.1.1.7 lineage that was recently reported as the UK variant of concern, and its associated travel worry and Generalized Anxiety Disorder (GAD-7) score. Results: A total of 1,058 HCWs completed the survey; 66.5% were female, 59.0% were nurses. 9.0% indicated they had been previously diagnosed with COVID-19. Regarding the B.1.1.7 lineage, almost all (97.3%) were aware of its emergence, 73.8% were aware that it is more infectious, 78.0% thought it causes more severe disease, and only 50.0% knew that current COVID-19 vaccines are effective in preventing it. Despite this, 66.7% of HCWs were not registered to receive the vaccine. HCWs' most common source of information about the new variant was social media platforms (67.0%), and this subgroup was significantly more worried about traveling. Nurses were more worried than physicians (P = 0.001). Conclusions: Most HCWs were aware of the emergence of the SARS-CoV-2 B.1.1.7 variant and expressed substantial travel worries. Increased worry levels were found among HCWs who used social media as their main source of information, those with lower levels of COVID-19 vaccine uptake, and those with higher GAD-7 scores. The utilization of official social media platforms could improve accurate information dissemination among HCWs regarding the Pandemic's evolving mutations. Targeted vaccine campaigns are warranted to assure HCWs about the efficacy of COVID-19 vaccines toward SARS-CoV-2 variants.


Subject(s)
COVID-19 Vaccines , COVID-19 , Anxiety , Cross-Sectional Studies , Female , Health Personnel , Humans , Male , Perception , SARS-CoV-2 , Travel , Travel-Related Illness , United Kingdom
6.
Comput Biol Med ; 135: 104560, 2021 08.
Article in English | MEDLINE | ID: covidwho-1263240

ABSTRACT

BACKGROUND: The global pandemic caused by a RNA virus capable of infecting humans and animals, has resulted in millions of deaths worldwide. Severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) infects the lungs, and the gastrointestinal tract to some extent. Rapid structural mutations have increased the virulence and infectivity of the virus drastically. One such mutated strain known as the UK variant has caused many deaths in the United Kingdom. HYPOTHESIS: Among several indigenous natural ingredients used for prevention and cure of many diseases, the catechins have been reported for their antiviral activity, even against SARS-CoV-2. Characteristic mutations present on the spike protein have presented the newer strain its enhanced infectivity. The spike protein helps the virus bind to ACE2 receptor of the host cell and hence is a drug target. Catechins have been reported for their entry-inhibitory activity against several viruses. METHOD: In this study, we performed molecular docking of different catechins with the wild and mutant variants of the spike protein of SARS-CoV-2. The stability of the best docked complexes was validated using molecular dynamics simulation. RESULTS: The in-silico studies show that the catechins form favourable interactions with the spike protein and can potentially impair its function. Epigallocatechin gallate (EGCG) showed the best binding among the catechins against both the strains. Both the protein-ligand complexes were stable throughout the simulation time frame. CONCLUSION: The outcomes should encourage further exploration of the antiviral activity of EGCG against SARS-CoV-2 and its variants.


Subject(s)
Catechin , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Catechin/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding
7.
Viruses ; 13(6)2021 06 07.
Article in English | MEDLINE | ID: covidwho-1259627

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of COVID-19, is a readily transmissible and potentially deadly pathogen which is currently re-defining human susceptibility to pandemic viruses in the modern world. The recent emergence of several genetically distinct descendants known as variants of concern (VOCs) is further challenging public health disease management, due to increased rates of virus transmission and potential constraints on vaccine effectiveness. We report the isolation of SARS-CoV-2 VOCs imported into Australia belonging to the B.1.351 lineage, first described in the Republic of South Africa (RSA), and the B.1.1.7 lineage originally reported in the United Kingdom, and directly compare the replication kinetics of these two VOCs in Vero E6 cells. In this analysis, we also investigated a B.1.1.7 VOC (QLD1516/2021) carrying a 7-nucleotide deletion in the open reading frame 7a (ORF7a) gene, likely truncating and rendering the ORF7a protein of this virus defective. We demonstrate that the replication of the B.1.351 VOC (QLD1520/2020) in Vero E6 cells can be detected earlier than the B.1.1.7 VOCs (QLD1516/2021 and QLD1517/2021), before peaking at 48 h post infection (p.i.), with significantly higher levels of virus progeny. Whilst replication of the ORF7a defective isolate QLD1516/2021 was delayed longer than the other viruses, slightly more viral progeny was produced by the mutant compared to the unmutated isolate QLD1517/2021 at 72 h p.i. Collectively, these findings contribute to our understanding of SARS-CoV-2 replication and evolutionary dynamics, which have important implications in the development of future vaccination, antiviral therapies, and epidemiological control strategies for COVID-19.


Subject(s)
Open Reading Frames/genetics , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Viral Proteins/genetics , Virus Replication , Adult , Animals , Australia , COVID-19/prevention & control , COVID-19/transmission , COVID-19/virology , Chlorocebus aethiops , High-Throughput Nucleotide Sequencing , Humans , Kinetics , Middle Aged , Mutation , Nasopharynx/virology , Phylogeny , SARS-CoV-2/classification , South Africa , United Kingdom , Vero Cells
9.
EMBO Mol Med ; 13(6): e14062, 2021 06 07.
Article in English | MEDLINE | ID: covidwho-1210029

ABSTRACT

Scientists and the public were alarmed at the first large viral variant of SARS-CoV-2 reported in December 2020. We have followed the time course of emerging viral mutants and variants during the SARS-CoV-2 pandemic in ten countries on four continents. We examined > 383,500 complete SARS-CoV-2 nucleotide sequences in GISAID (Global Initiative of Sharing All Influenza Data) with sampling dates extending until April 05, 2021. These sequences originated from ten different countries: United Kingdom, South Africa, Brazil, United States, India, Russia, France, Spain, Germany, and China. Among the 77 to 100 novel mutations, some previously reported mutations waned and some of them increased in prevalence over time. VUI2012/01 (B.1.1.7) and 501Y.V2 (B.1.351), the so-called UK and South Africa variants, respectively, and two variants from Brazil, 484K.V2, now called P.1 and P.2, increased in prevalence. Despite lockdowns, worldwide active replication in genetically and socio-economically diverse populations facilitated selection of new mutations. The data on mutant and variant SARS-CoV-2 strains provided here comprise a global resource for easy access to the myriad mutations and variants detected to date globally. Rapidly evolving new variant and mutant strains might give rise to escape variants, capable of limiting the efficacy of vaccines, therapies, and diagnostic tests.


Subject(s)
COVID-19/prevention & control , Genome, Viral , SARS-CoV-2/genetics , COVID-19/pathology , COVID-19/therapy , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Humans , Mutation , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics , Viral Nonstructural Proteins/genetics
11.
Infection ; 49(6): 1341-1345, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1174038

ABSTRACT

PURPOSE: We report on the first identified cluster of the B.1.1.7 variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in the northeast of Italy. METHODS: The cluster was recognized in January 2021 with an epidemiological started from the hospitalization of a 68-year-old man suffering from coronavirus disease 2019 (COVID-19) related pneumonia and we surprisingly found three families involved in the same cluster. RESULTS: We retrospectively rebuilt the pathway of infection and performed a virological analysis. CONCLUSION: This allow us to make clear the very high attack rate and the great infective capacity of this B.1.1.7 variant of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Aged , Humans , Italy/epidemiology , Male , Retrospective Studies
12.
Pathogens ; 10(3)2021 Mar 05.
Article in English | MEDLINE | ID: covidwho-1129760

ABSTRACT

The rapid evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is manifested by the emergence of an ever-growing pool of genetic lineages. The aim of this study was to analyze the genetic variability of SARS-CoV-2 in Jordan, with a special focus on the UK variant of concern. A total of 579 SARS-CoV-2 sequences collected in Jordan were subjected to maximum likelihood and Bayesian phylogenetic analysis. Genetic lineage assignment was undertaken using the Pango system. Amino acid substitutions were investigated using the Protein Variation Effect Analyzer (PROVEAN) tool. A total of 19 different SARS-CoV-2 genetic lineages were detected, with the most frequent being the first Jordan lineage (B.1.1.312), first detected in August 2020 (n = 424, 73.2%). This was followed by the second Jordan lineage (B.1.36.10), first detected in September 2020 (n = 62, 10.7%), and the UK variant of concern (B.1.1.7; n = 36, 6.2%). In the spike gene region, the molecular signature for B.1.1.312 was the non-synonymous mutation A24432T resulting in a deleterious amino acid substitution (Q957L), while the molecular signature for B.1.36.10 was the synonymous mutation C22444T. Bayesian analysis revealed that the UK variant of concern (B.1.1.7) was introduced into Jordan in late November 2020 (mean estimate); four weeks earlier than its official reporting in the country. In Jordan, an exponential increase in COVID-19 cases due to B.1.1.7 lineage coincided with the new year 2021. The highest proportion of phylogenetic clustering was detected for the B.1.1.7 lineage. The amino acid substitution D614G in the spike glycoprotein was exclusively present in the country from July 2020 onwards. Two Jordanian lineages dominated infections in the country, with continuous introduction/emergence of new lineages. In Jordan, the rapid spread of the UK variant of concern should be monitored closely. The spread of SARS-CoV-2 mutants appeared to be related to the founder effect; nevertheless, the biological impact of certain mutations should be further investigated.

13.
Int J Mol Sci ; 22(3)2021 Jan 28.
Article in English | MEDLINE | ID: covidwho-1055068

ABSTRACT

Since early 2020, the COVID-19 pandemic has caused an excess in morbidity and mortality rates worldwide. Containment strategies rely firstly on rapid and sensitive laboratory diagnosis, with molecular detection of the viral genome in respiratory samples being the gold standard. The reliability of diagnostic protocols could be affected by SARS-CoV-2 genetic variability. In fact, mutations occurring during SARS-CoV-2 genomic evolution can involve the regions targeted by the diagnostic probes. Following a review of the literature and an in silico analysis of the most recently described virus variants (including the UK B 1.1.7 and the South Africa 501Y.V2 variants), we conclude that the described genetic variability should have minimal or no effect on the sensitivity of existing diagnostic protocols for SARS-CoV-2 genome detection. However, given the continuous emergence of new variants, the situation should be monitored in the future, and protocols including multiple targets should be preferred.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , SARS-CoV-2/isolation & purification , COVID-19/virology , Genome, Viral , Humans , Mutation , SARS-CoV-2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL